
The RAM-based Web Proxy Servers

KIN-YEUNG WONG and KA-CHON LAI
Computing Program

Macau Polytechnic Institute
Rua Luis Gonzaga Gomes

MACAU
kywong@ipm.edu.mo chonchondotcom@gmail.com

Abstract: - The conventional web proxy servers use hard disk as their primary cache storage. However, as disks
use mechanical operations, they are typically the slowest component of the servers. Though, in the last decade,
various solutions have been proposed to improve the proxy performance, disks are still the performance
bottleneck. Consider that the mainstream operating systems are 64-bit and the cost of memory has become
economical in recent years. In this paper, a proxy server using main memory as the primary cache storage is
proposed. Analytical results show that the ram-based proxy servers effectively eliminate the performance
bottleneck of disk, and allow systems to scale well for higher browser rates.

Key-Words: - Web Proxy, Web caching, Web Traffic, Storage Design, Performance Evaluation

1 Introduction
A web cache server [1] (also called a proxy server
or simply a proxy) is typically located near its
clients. It stores the retrieved object (from a remote
server) on a local disk, so that it is not necessary to
contact the remote server next time its clients
request the same object. The effective use of proxy
not only shortens user perceived latency, but also
reduces the number of requests reaching the remote
servers, thus reducing overall network activity.

However, the web traffic is continuously
growing in the last decade. The growth drivers
include the increasing popularity of mobile devices
[2][3] and wireless broadband [4] as well as the
increasing number of Internet users in developing
countries. As a result, proxies under overloaded
condition commonly occur. As all web requests
(from all clients) will be sent to their proxy server, if
the server is overloaded, it will cause performance
problems, including long delay or connection time-
outs.

1.1 Disks as the performance bottleneck
The operations of a proxy are simple: It receives and
processes requests from its clients, and then, if it
finds the requested object in its local disk (a cache
hit occurs), it returns the object to the user directly.
Otherwise (a cache miss occurs), it retrieves the
requested object from the remote origin server, and
then stores the retrieved object into the local disk.

As can be seen in the operations, a proxy server
performs disk I/O heavily. However, the
performance of disk is limited by many factors:
mechanical delay of a disk arm, command and
protocol overheads on an I/O channel and logical-to-
physical data block mapping. Therefore, disk is
typically the slowest component in a proxy, making
it the performance bottleneck. In other words, disks
play a critical role in the performance of a proxy.

Proxy servers generally have a hit ratio of 20-
40% depending on the traffic characteristic, which
implies that 60-80% requests will cause cache miss.
Serving cache-miss requests require file deletion
and creation operations: first, a file of an old cached
object will be removed from the disk (if a cache
replacement is needed), and then, a file for the
newly retrieved object has to be created.

Serving cache-hit requests primarily involves
disk operations (mainly disk reads), and these
operations contribute the largest portion of the
request response time. On the other hand, though
cache-miss requests require network operations,
disk operations (mainly disk write) are necessary.
Therefore, for both cache hit and miss situations, if
the overhead caused by the disk can be avoided, the
overall request response time can be reduced
substantially.

1.2 Mitigation to disk performance
problems

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 385 Issue 10, Volume 11, October 2012

To solve the performance problems caused by disk,
various mitigation approaches have been proposed.

1.2.1 Managements of cached objects in disk
One approach is to make the cached objects better
organized in the disk. The traditional method uses
direct mapping: it is to map a URL to a file system
path directly. This simple method could cause a
very long pathname depending on the lengths of
URLs, and hence looking up a cache file from the
disk can be time consuming (involving a number of
i-node search).

Today, the common method uses hash mapping,
which is adopted by the popular open source proxy
server Squid Proxy [5]. It is to create a fixed cache
directory structure beforehand (typically, three
levels), and the cached objects are stored in the
lowest level. The location of a cached object is
determined by the hash value of its URL. Due to the
nature of hash functions, each directory would has
the similar number of cached objects, which makes
the directory traverse time relatively short and
stable.

Wong and Yeung further improve the disk access
performance by using site-based mapping [6]. It
places files belonging to a given site in the same file
directory. This will cause file systems (such as fast
file system and ext2) to store web objects belonging
to the same site in nearby disk blocks. As a result, it
would reduce I/Os for the disk head when viewing a
web page, because its related files (such as
embedded images) are stored likely in the adjacent
disk blocks. The simulation results show that it
reduces disk access time by 21–50%, compared to
the conventional hash mapping method.

Other proposed methods include the work trying
to reduce the disk I/O of web proxy server in [7], the
work using the web-conscious storage management
in [8], as well as the scheme using the efficient
management for the proxy cache objects in [9].

1.2.2 File systems
Another approach is to use a specialized file system.
Traditional file systems are optimized for general-
purpose usage pattern, whereas Web proxies have a
different usage pattern. For example, the read
operations more than write operations in traditional
file systems, whereas web access is a write-
dominated usage pattern. Wang et al. [10] proposed
a customized file system, called UCFS, to improve
the disk I/O performance of proxy servers. UCFS
uses efficient meta-data tables to eliminate almost
all I/O overhead of meta-data searches and updates.

It also uses large disk transfers to significantly
improve disk write performance. Results of
simulation using real-world access traces shows that
ICFS achieves 8-19 times better I/O performance
than the Unix Fast File System (FFS).

On the other hand, Shriver et al. [11] proposed a
light-weight file system called Hummingbird for
Web proxy, which separates object naming and
storage locality through direct application-provided
hints. Their experimental results show that
Hummingbird achieves document request
throughput 2.3 to 9.4 times larger than that by the
Unix File System. Other techniques to optimize the
file system for web objects include [12][13].

1.2.3 Others
Besides the above two approaches, Wong and
Yeung proposed a novel approach to reduce the disk
load of a proxy server [6][14]. The approach is to
forward only those requests to popular web sites
(called hot requests) to the proxy server, and
forward others (called cold requests) to the remote
servers directly bypassing the proxy server. Since
this approach is able to prevent the proxy from
processing the unnecessary cold requests, the disk
overhead caused by those requests can be
eliminated.

1.3 Use main memory as the primary
storage
As can be seen, many previous attempts are made to
mitigate the performance problems caused by disks.
In this paper, we argue that if the use of disks can be
avoided, the problems associated with disks can be
eliminated, leading to substantial improvement on
the overall performance.

Instead of using disk as the primary cache
storage, we propose the use of main memory. While
it is obvious that the performance of RAM is faster
than that of a disk, the use of RAM as the primary
storage is not ready until recent years:
1. Since 64-bit CPU has become mainstream and

most modern operating systems have already
become 64-bit ready, supporting up to a
theoretical 16TB of RAM. With the support of
such huge capacity, software designers are free
to design software that can store as much useful
data as possible in memory to achieve higher
performance.

2. Since the densities of chip increase, memory can
store huge data which makes the capacity and
price of main memory can follow the traditional
disk.

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 386 Issue 10, Volume 11, October 2012

On the other hand, the recent breakthroughs of
memory technologies also support the feasibilities
of ram-based storage in the design of future proxy
servers. For example, IBM and Micron Technology
announced the production of a new memory device
that uses through-silicon vias (TSVs) [15], which
enable memory chips to be built in three
dimensions. As a result, the new memory chips can
achieve 128 Gbytes per second (GB/s) bandwidth,
while the current high-level Dynamic RAM
(DRAM) delivers around 12.8 GB/s. On the other
hand, IBM researchers have successfully created a
single data bit by using only 12 atoms [16]. This
achievement points toward magnetic storage that is
417 times denser than today's DRAM.

The conventional design and implementation of
proxy servers are based on the assumption that the
disk is the primary cache storage. Putting massive
amount of RAM into the machine that is running the
conventional server software could achieve higher
performance. However, in this paper, we argue that
if there is sufficient amount of RAM, to optimize
performance, the server should be designed and
implemented with the notion that RAM is used as
the primary storage. We call this type of server
RAM-based server.

This paper is organized as follows. Section 1
reviews the performance problems caused by hard
disks, and most importantly, points out that the use
of as the primary cache storage. Section 2 presents
the characteristics and a design of ram-based web
proxy servers. Section 3 analyzes the performance
of the ram-based server, and the corresponding
numerical and simulation results are shown in
Section 4. Finally, section 5 presents the conclusion.

2 Designing a RAM-Based Web
Cache Server

2.1 Use main memory as the primary
storage
We refer the disk-based design to those designs with
the notion that disk is the main storage and using
disk I/O system calls (e.g., fopen() in the C
programing language) in their implementation for
retrieving the objects in the disk. This notion will
not be changed even though the server is equipped
with numerous main memory.

We refer the RAM-based design to those designs
with the notion that memory is the main storage and
directly retrieving the objects in memory through

the manipulation of data structures (e.g., array and
link disk).

In this section, we will first review the
conventional (disk-based) cache architectures, and
then demonstrate how to only the operations can be
designed merely using RAM as the main storage,
called ram-based.

The following reviews the differences between
RAM and disk:
1) RAM consists of chips that store data

electronically whereas disk consists of platters
that store data magnetically. Therefore, the data
stored in RAM is volatile whereas those stored in
disk is permanent.

2) If the data requested is stored in disk, a copy of it
will be temporarily put into RAM before being
processed by CPU. Therefore, if the requested
data is already in RAM, the access time is much
shorter.

3) Random access in disk is slower than sequential
access because the former requires more disk
mechanical movements, whereas the
performances of these two accesses are similar in
memory. Therefore, the layout of data in
memory is less critical than that on a disk.
The differences 2) and 3) point out the

advantages of RAM-based servers, whereas the
difference 1) points out the limitation which will be
addressed in the conclusion section.

2.2 Conventional disk-based proxy design

2.2.1 Cache architecture
Fig. 1 shows the typical design of the object
management in the conventional (disk-based) proxy
servers. A fixed cache directory structure is created
beforehand (typically, three levels). The cached
objects are on the lowest level, and the location of a
cached object is based on the hash value of its URL.

In Squid, a widely used open source proxy
server, the default configuration is that the number
of first-level directories under the cache root is 16,
and the number of second-level directories under
each first-level file directory is 256. Cached files
will then be evenly mapped to the second-level
subdirectories.

The metadata of each object in the disk is stored
in a data structure, called StoreEntry. A hash table is
used to store all StoreEntrys. A StoreEntry contains
two pointers: sfileno and sdirno. sdirno points out
the path of the object in the disk and sfileno is the
actual file name of the object.

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 387 Issue 10, Volume 11, October 2012

Fig. 1 Typical object management of the disk-based
design

As can be seen, in the disk-based proxy server,

the memory is used to store the metadata, the hash
table of StoreEntry, whereas the disk is used to store
the actual objects.

2.2.2 Cache Miss
The operations for a cache miss are as follow and
shown in Fig. 2:
1. Upon receiving the request from a client, it

searches for the corresponding StoreEntry in the
hash table.

2. As it cannot find the object, it contacts the remote
origin server for the requested object on behalf of
the client.

3. After receiving the object from the origin server,
it will create a StoreEntry to store the metadata
of the object and add it into the hash table.

4. Based on the metadata specified in its StoreEntry,
it stores the actual object in the corresponding
file folder in the disk. Meanwhile, it returns the
object to the client.

As can be seen, the process mainly requires two
memory operations (steps 1 and 3) and one disk
operation (step 4).

2.2.3 Cache Hit
The operations for a cache miss are as follow:

1. Upon receiving the request from a client, it
searches the corresponding StoreEntry in the
hash table.

2. It examines the metadata (sfileno and sdirno)
stored in the StoreEntry to determine the disk
location of the object.

3. It retrieves the actual cached object from the disk
and returns it to the client.
As can be seen, the process mainly requires also

two memory operations (steps 1 and 2) and one disk
operation (step 3).

Fig. 2 Operation of Cache Miss in Disk-based Proxy

2.3 RAM-based design
As can be seen in the conventional design shown in
Section 2.2, the disk-based design uses a hash table
(memory) to identify the existence of an object, and
uses a StoreEntry to determine the disk location of
the object. In the RAM-based server design, this
process can be simplified.

2.3.1 Cache Architecture
As we have sufficient memory space, we can use a
simpler data structure to manage the cached objects
in the memory, as shown in Fig. 3. A hash table can
be used to link up all the cached objects directly in
the memory. Each actual object is added by a header
that stores all the necessary metadata (e.g., URL,

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 388 Issue 10, Volume 11, October 2012

timestamp, etc) for the cache operations. The object
header is a fixed length data structure whereas the
size of the actual object varies.
 The advantage of such design is that it can reduce
the number of memory reference. Unlike the disk-
based operations that require another data structure
(StoreEntry) to identify the disk location of a cached
object, this design can retrieve the object
immediately after the hash table lookup.

Fig. 3 Object management of the RAM-based proxy

2.3.2 Cache Miss
By using memory as the cache storage, the
operations for a cache miss become:
1. Upon receiving the request from a client, it

searches the hash table for the requested object.
2. As it cannot find the object, it contacts the remote

origin server for the requested object on behalf of
the client.

3. After receiving the object from the origin server,
it will add it into the hash table. Meanwhile, it
returns the object to the client.

2.3.3 Cache Hit
The operations for a cache hit are as follow:
1. Upon receiving the request from a client, the

proxy will firstly lookup the reference of the
information of the object in the hash table.

2. After that, it will retrieve the real object in the
RAM and return it to the client.

2.3.3 Simplified Operations
As can be seen, for cache miss cases, the step 3 in
the process using the RAM-based design replaces
the steps 3 and 4 in the process using the
conventional design (as described in Section 2.2.2).
Similarly, for cache hit cases, the step 1 replaces the
steps 1 and 2 in the process using the conventional
design (as described in Section 2.2.3), and the step 2
involve memory operation instead of disk
operations. These designs not only simplify the
proxy operations but also reduce the workload
offered to the proxy as the disk is bypassed.

3 Performance Analysis
Consider a typical local area network in which there
are a number of client machines connecting to a
proxy server, as shown in Fig. 4. Web requests will
be sent to the proxy which in turn forward the
requests to the remote web servers in the Internet.
The proxy acts as a cache server storing frequently
requested web objects locally.

We then analyze the response time of the
conventional disk-based proxy and show how it can
be improved if ram-based design is used in the
numerical results section.

Fig. 4 A typical network connected to the Internet

3.1 Estimated Proxy Load Reduction
Suppose that there are N requests arrived to the
proxy, r1, r2, …, rN, for the web objects o1, o2, … oN,
respectively.

When the proxy receives ri from a client, if oi is
in its local cache storage, a cache hit occurs and the
proxy will respond the client with oi directly from
its local storage. If otherwise, a cache miss occurs
and the proxy will make another request to the
remote server for oi.

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 389 Issue 10, Volume 11, October 2012

Proxy hit ratio is defined as:

𝐻 =
 total number of hits

𝑁

When a cache hit occurs, let L be the amount of the
processing workload and let D be the amount of
disk workload offered to the proxy. On the other
hand, when a cache miss occurs, the proxy needs to
perform an extra work of making another request ri
to the remote server. By using a similar approach for
load estimation as suggested in [17], we assume that
the extra processing workload offered to the proxy
is also equal to L, giving a total of 2L. For
simplicity, we assume the amount of disk workload
is also D.

As a result, the load offered to the disk-based
proxy can be obtained by:

𝐿𝑜𝑎𝑑!"#$%#&'"#() = 𝐻 𝐿 + 𝐷 + (1 − 𝐻)(2𝐿 + 𝐷)
Since the ram-based proxy server uses memory
(instead of disk) for the cache storage, define M is
the corresponding load for the proxy for either a
cache hit or miss. Similarly, the load offered to the
ram-based proxy can be obtained by:

𝐿𝑜𝑎𝑑!"# = 𝐻 𝐿 +𝑀 + (1 − 𝐻)(2𝐿 +𝑀)

Therefore, the estimated load reduction using the
ram-based proxy can be obtained by:

𝐿𝑅 =
𝐿𝑜𝑎𝑑!"#$%#&'"#() − 𝐿𝑜𝑎𝑑!"#

𝐿𝑜𝑎𝑑!"#$%#&'"#()

 =
𝐷 −𝑀

𝐷 + (2 − 𝐻)𝐿

=
𝐷 𝑀 − 1

𝐷 𝑀 + (2 − 𝐻) 𝐿 𝑀

As both M and L are much smaller than D, if we
assume that they are similar and L≈M, then:

 𝐿𝑅 ≈
𝐷 𝑀 − 1

𝐷 𝑀 + (2 − 𝐻)

As H<1,

𝐿𝑅 <
𝐷 𝑀 − 1
𝐷 𝑀 + 1

It can be seen that the higher the ration of D/M, the
higher the load reduction can be achieved. For
example, for D/M =10, the maximum load reduction
that can be achieved is 9/11=82% whereas it can be
99/101=98% if D/M=100.

3.2 Modeling of Caching Systems

3.2.1 Queuing Network Model for the
Conventional Proxy
As shown in the previous studies [18][19], the
conventional proxy system can be modeled as a
closed queuing network with eight queues (see Fig.
5):

clients: the set of clients, where the delay is the

average think time a client spent between
making requests.

LAN: the LAN connecting the clients and
proxy.

router: the Internet gateway with small latency.
outLink: the transmitting link to the ISP.
Internet: the total delay at the ISP, at the ISP's link

to the Internet, at the Internet itself, and
at the remote servers.

inLink: the receiving link to the ISP.
CPU: the CPU in the proxy.
disk: the disk in the proxy.

Fig. 5 The queuing network model of the
conventional caching system

The following parameters have to be considered in
this model:

EffectiveClients: effective number of clients

(client workstations)
actively using the Web

BrowserRate
(requests/sec):

Rate at which a browser
requests a new object

router

Internet

clients

Proxy

LAN

inLink

outLink

disk

CPU

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 390 Issue 10, Volume 11, October 2012

LANBandwidth
(Mbps):

LAN bandwidth

HTTPRequestSize
(Bytes):

average size of the HTTP
requests (generated by the
browser)

DocumentSize
(kBytes):

average size of all
requested objects

Phit fraction of requests that can
be served from the proxy's
cache

HitCPUTime (sec): CPU time needed to
process the tasks for a
cache hit at the proxy server

MissCPUTime (sec): CPU time needed to
process the tasks for a
cache miss at the proxy
server

DiskTime
(msec/kBytes):

disk time at the proxy

MaxPDU (Bytes): maximum PDU size for the
LAN’s network layer
protocol

RouterLatency
(usec/datagram):

router latency per passing
datagram

LinkBandwidth
(kbps):

bandwidth of the
connection to the that ISP

InternetRTDelay
(msec):

Internet round trip delay
between the ISP and the
remote originating server

InternetDataRate
(kBps):

Internet data transfer rate

3.2.2 Services Demands of the Queues
Before solving the queuing model, we need to
calculate the service demands of the queues have to
be obtained. The service demand of a queue is the
sum of the service times at the queue over all visits
to that queue. And the service times of the queues
are calculated based on the parameters listed above.

Table 1 summarizes the services demands for the
queues, where DLAN, Drouter, DoutLink, DInternet and
DinLink are the service demands for the queues in the
model of a basic browser-server system without a
proxy. The derivation of the equations of these
service demands can be found in [18][19].

3.2.3 Modeling for the RAM-based Proxy
The modeling for the conventional disk-based proxy
can be directly applied to that for RAM-based
Proxy. The queuing model of the RAM-based proxy

is same as the one shown in Fig.2 except that the
disk queue should be replaced by a RAM queue.

On the other hand, one more parameter is
needed: RamTime (msec/Bytes) which is the
average time spent in the RAM cache storage. With
this parameter, the service demand for the RAM
queue is 𝐷!"#

!"#$% = 𝑅𝑎𝑚𝑇𝑖𝑚𝑒×𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒.

Queue Service demand
LAN

router

outLink

Internet

inLink

CPU

Disk

Table 1 The service demands for the queues in the
model of conventional caching system

4 Numerical and Simulation Results

4.1 Performance Evaluation using MVA
The closed queuing network of the cache system
shown in Fig. 5 can be solved by Mean Value
Analysis (MVA) [20]. In order to examine the proxy
performance improvement, we need to set the values
for the model parameters, as shown in Table 2. By
substituting the values to the service demand
equations, the service demands for the two systems
can be obtained. And, with the service demands, by
using MVA, we can obtain the average request
response times and the queue utilization for the
caching systems. The results are shown in Fig. 6.

Considering the caching system with the disk-
based proxy, as can be seen in Fig. 6(a), as browser
rate increases, the disk utilization increases as well.
When the browser rate reaches about 0.1
request/sec, the disk becomes 100% utilized,
creating the performance bottleneck of the system,
which in turn starts to limit the overall system
throughput, as shown in Fig. 6(b).

Fig. 6(b) also shows that the system throughput
for the ram-based proxy increases as the browser
rates increases. It indicates that the ram-based proxy
is able to eliminate the performance bottleneck of

() LANLAN
proxy
LAN DPhitDPhitD ××−+×= 21

() LANDPhit ×−= 2
() router

proxy
router DPhitD ×−= 1

() outLink
proxy
outLink DPhitD ×−= 1

() Internet
proxy
Internet DPhitD ×−= 1

() inLink
proxy
inLink DPhitD ×−= 1

() eMissCPUTimPhit
HitCPUTimePhitD proxy

CPU

×−

+×=

1
zeDocumentSiDiskTimeD proxy

disk ×=

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 391 Issue 10, Volume 11, October 2012

disk, allowing the system to scale well for higher
browser rates. For example, as shown in Fig. 6(b),
during the light load, the overall system throughputs
for the two types of proxy servers are similar.
However, as the browser rate increases the
throughput of the disk-based proxy is limited to
around 60 requests/sec due to the disk performance
bottleneck as mentioned earlier. And when the
browser rate reaches 0.4 request/sec, the system
throughput for the RAM-based proxy can achieve
the rate of 350 request/sec, whereas the disk-based
proxy is still limited to 60 requests/sec.

HTTPRequestSize 300
HitCPUTime 0.25
MissCPUTime 0.50
MaxPDU 65,535
RouterLatency 50
LANBandwidth 100
InternetRTDelay 100
InternetDataRate 100
EffectiveClients 500
DocumentSize 30
Phit 0.4
DiskTime 0.5
RamTime 0.005
Table 2 The used parameter setting

4.2 Performance Evaluation using
Simulation
To evaluate the performance of RAM-based proxy,
we configured the Squid proxy server to make it to
use the main memory as the cache storage without
the access to the disk. Our goal of this evaluation is
to show that RAM-based proxy is feasible and
provide significant performance improvements.

To measure the performance of the RAM-based
proxy and compare it to that of the conventional
disk-based proxy (also running Squid), we used the
Web Polygraph proxy performance benchmark
(version 4.3.2), which is a de facto industry standard
for benchmarking proxy servers [21].

In the simulation tests, the Web Polygraph was
configured to use the workload distribution
parameters of the Fourth Polygraph Cache-off
(“Polymix-4”) [22], which simulates the real world
web traffic. The workload schedule consists of 10
test phases, and each phase features different robot
population size and offered load, which is to
simulate the workload offered to the real-world

proxy servers. The total time for one simulation test
is about 10.33 hour.

(a) Disk Utilization

(b) System Throughput

Fig. 6 Analytical results

We used the 3.1 version of Squid proxy server,
and ran it on a Linux machine with a 2.4 GHz CPU,
16 Gbytes Memory. It is also equipped with a 120
Gbytes disk. The cache storage size is 12 Gbytes for
both RAM-based and disk-based proxy servers.
We used another two machines for the Web
Polygraph Client (WP-Client) and Server (WP-
Server) respectively. We connected these two
machines and the proxy in a separated, independent
network using a high-speed Ethernet switch so that
the network bandwidth is not the bottleneck.

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 392 Issue 10, Volume 11, October 2012

We performed experiments varying the offered
load, so as to see the performances of the two types
of proxy. Fig. 7 shows the results of the average
response time for the hit requests of the two types of
proxy servers as a function of the offered load
(system throughput).

As can be seen in the figure, the performance of
the disk-based proxy in terms of response time start
to deteriorate quickly as the offered load reaches
around 700 request/sec, at which the ram-based
proxy is still providing a very low response time
(about 3 msec). The throughput for the disk-based
proxy is saturated at the offered load of around 800
request/sec, as at that rate, the response time reaches
an unacceptable value, 517 msec. This result also
supports that the ram-based proxy is able to
eliminate the performance bottleneck in the disk-
based proxy and allow the system to scale well for
higher offered load.

Fig. 7 Benchmark results

5 Conclusion
The conventional web proxy servers use disk as
their primary cache storage. As disks involve
mechanical operations, it is typically the slowest
component in the proxy and the performance
bottleneck. Whereas many previous efforts were
proposed to reduce the disk load, this paper
proposes another approach that is to use main
memory as the primary cache storage.

In this paper, we have introduced the design of a
RAM-based proxy. We have also used the closed
queuing network to model the caching systems
using a disk-based and a RAM-based proxy
respectively. Analytical results show that the ram-
based proxy effectively eliminates the performance
bottleneck caused by disk, and allows system to
scale well for higher browser rates. For example,
when the browser rate reaches 0.4 request/sec, the
system throughput for disk-based proxy is 60
requests/sec, whereas the RAM-based proxy can
achieve the 350 request/sec.

However, the limitation of RAM-based proxy
servers is that the objects stored in the cache are
volatile. That is, unlike the disk-based proxy, if a
RAM-based proxy is rebooted after a failure or
system maintenance, the objects in the cache will
not exist, and the cache has to go through a warm up
process before achieving a reasonable hit ratio.
Nonetheless, regularly backup the objects in the
RAM to disk storage can relief the problem.

This paper applies the memory-based design to
the web proxy server. Considering the advance of
memory technologies and the cost of memory has
become economical in recent years, it is anticipated
that more and more types of servers and applications
can make use of large amount of memory in their
design to enhance the overall efficiency and
performance.

Acknowledgment
The work described here is supported by Macao
Polytechnic Institute Research Grant No. RP/ESAP-
1/2009.

References:
[1] K.Y. Wong, Web Cache Replacement Policies:

A Pragmatic Approach, IEEE Network, Vol.20,
Iss.2, 2006, pp. 28-34.

[2] Angus K.Y. Wong, Cell Phones as Mobile
Computing Devices, IT Professional, Vol. 12,
No. 3, May/June 2010, pp. 40-45.

[3] I. S. Lei and K. Y. Wong, The Multiple-Touch
User Interface Revolution, IT Professional,
Vol. 11, No. 1, Jan./Feb. 2009, pp. 42-49.

[4] Angus K.Y. Wong, The Near-Me Area
Network, IEEE Internet Computing, vol. 14,
no. 2, Mar./Apr. 2010, pp. 74-77.

[5] Squid Caching Proxy, http://www.squid-
cache.org/.

[6] K.Y. Wong and K. H. Yeung, An Alternative
Web Caching Design: a Site-based Approach,

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 393 Issue 10, Volume 11, October 2012

IET Communications, Vol.4, iss.12, 2010, pp.
1504-1515.

[7] C. Maltzahn, K. J. Richardson and D.
Grunwald, Reducing the disk I/O of web proxy
server caches, Proc. USENIX Ann. Technical
Conf. (USENIX-99), 1999, pp. 225-238.

[8] E.P. Markatos, D.N. Pnevmatikatos, M.D.
Flouris and M.G.H. Katevenis, Web-conscious
storage management for web proxies, IEEE
Trans. Networking, 2002, pp. 735-748.

[9] K. Cheng, Y. Kambayashi and M. Mohania,
Efficient management of data in proxy cache,
Proceedings of 12th International Workshop on
Database and Expert Systems Applications,
2001, pp. 479-483.

[10] J. Wang, R. Min, Y. Zhu, and Y. Hu, UCFS - a
novel User-space, high performance,
Customized File System for Web proxy
servers, IEEE Transactions on Computers,
Vol.51, Iss.9, 2002, pp. 1056-1073.

[11] E. Shriver, E. Gabber, L. Huang and C. Stein,
Storage Management for Web Proxies,
USENIX Annual Technical Conference, 2001,
pp. 203-216.

[12] P. Lensing, D. Meister and A. Brinkmann,
hashFS: Applying Hashing to Optimize File
Systems for Small File Reads, International
Workshop on Storage Network Architecture
and Parallel I/Os (SNAPI), 2010, pp. 33-42.

[13] L. Yu, G. Chen, W. Wang and J. Dong,
MSFSS: A Storage System for Mass Small
Files, Proc. 11th International Conference on
Computer Supported Cooperative Work in
Design, 2007, pp. 1087-1092.

[14] K. Y. Wong and K. H. Yeung, Site-Based
Approach in Web Caching Design, IEEE
Internet Computing, Vol.5, No.5, 2001, pp.28-
34.

[15] 3D Chip-Making Capability,
http://www.ibm.com/news/ae/en/2011/12/04/s9
71220m34896l98.html.

[16] Structured Memories, Science, Vol. 335, Iss.
6065, 2012, pp. 144-a

[17] K. Y. Wong and K. H. Yeung, A Dispatching
Technique to Solve the Overloading Conditions
of Web Cache Servers, WSEAS Transaction on
Communications, Vol. 5, Iss. 5, 2006, pp.725-
731.

[18] D. A. Menasce, L. W. Dowdy, V. Almeida,
Performance by Design: Computer Capacity
Planning By Example, Prentice Hall, 2005.

[19] K. Y. Wong and K. H. Yeung, Analytical Study
on Web Caching Systems using Closed
Queuing Network Modeling, WSEAS
Transaction on Communications, Vol.5, Iss.5,
2006, pp.732-737.

[20] M. Reiser and S. S. Lavenberg, Mean-Value
Analysis of Closed Multichain Queuing
Networks, Journal of the ACM, Vol.27, Iss.2,
1980, pp. 313-322.

[21] Web Polygraph. http://www.web-
polygraph.org/.

[22] PolyMix-4 as Web traffic workload.
http://www.web-
polygraph.org/docs/workloads/polymix-4/

Angus K.Y. Wong received
his B.Sc. and Ph.D degrees in
information technology from
the City University of Hong
Kong in 1998 and 2002
respectively. Wong is
currently a Professor at
Macao Polytechnic Institute.
His research interests include
Internet systems, network
infrastructure security, and

mobile computing. He is also an active industry
consultant in the areas of computer networking and
communication systems. Wong and Yeung co-
authored Network Infrastructure Security, Springer,
2009.

Ray K.C. Lai received the
B.Sc. degree in Computer
Studies from Macau
Polytechnic Institute in 2009,
and is currently working
toward the M.Sc. degree in
Software Engineering from
University of Macau. His

research interests include Internet systems and
networking.

WSEAS TRANSACTIONS on COMMUNICATIONS Kin-Yeung Wong, Ka-Chon Lai

E-ISSN: 2224-2864 394 Issue 10, Volume 11, October 2012

